H -atom positions were calculated and confirmed in difference Fourier maps. The H atoms were refined as riding atoms with fixed isotropic displacement parameters. The program PLATON94 (Spek, 1994) with the module MISSYM (Le Page, 1987, 1988) was used to check for missed symmetry and found no extra crystallographic symmetry. PARST95 (Nardelli, 1996) located a pseudosymmetry between molecules A and B (pseudo-twofold axis, pseudo inversion centre). The reflection data were analyzed and it was observed that the reflections $0 k l$ are systematically absent for $l=2 n+1$. This indicates the monoclinic space group $P 2 / c$ (interchanging a and b). However, the unit-cell angles are clearly different from 90° for two of the angles and the program TRACER (Lawton \& Jacobson, 1965), which checks for other possible unit cell options, did not find any new solution. The conclusion is that the correct space group is $P \overline{1}$, but pseudosymmetry elements show that it is close to the monoclinic space group P2/c.

Data reduction: DREADD (Blessing, 1987, 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976).

The authors thank Mr Flemming Hansen for collecting the X-ray data. The diffractometer and an X-ray generator were acquired by means of grants from the Danish Natural Science Research Council. PharmaBiotec, the Alfred Benzon Foundation and the Lundbeck Foundation are thanked for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1102). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.
Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.
Brown, D. A., Coogan, R. A., Fitzpatrick, N. J., Glass, W. K., Abukshima, D. E., Shiels, L., Ahlgrén, M., Smolander, K., Pakkanen, T. T., Pakkanen, T. A. \& Peräkylä, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 2673-2679.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Krüger, U. \& Zinner, G. (1978). Arch. Pharm. (Weinheim), 311, 39-47.
Larsen, I. K. (1988). Acta Cryst. B44, 527-533.
Lawton, S. L. \& Jacobson, R. A. (1965). The Reduced Cell and its Crystallographic Applications, Ames Laboratory. Available from the Clearinghouse for Federal Scientific and Technical Information, National Institute of Standards and Technology, US Department of Commerce, Springfield, Virginia, USA.
Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
Le Page, Y. (1988). J. Appl. Cryst. 21, 983-984.
Nardelli, M. (1996). J. Appl. Cryst. 29, 296-300.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1994). PLATON94. Molecular Graphics Program. University of Utrecht. The Netherlands.
Zinner, G. \& Krüger, U. (1975). Chem. Ztg, 99, 90.

Acta Cryst. (1997). C53, 1093-1097

Four Methyl Azolyl-3-propenoates

Alexander J. Blake, \ddagger Hamish McNab and Craig Thornley \dagger
Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland. E-mail: a.j.blake@nott.ac.uk

(Received 10 March 1997; accepted 1 April 1997)

Abstract

The structures of four azolyl-3-propenoic esters, methyl (E)-3-(imidazol-4-yl)propenoate, (2), as its hemihydrate, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} .0 .5 \mathrm{H}_{2} \mathrm{O}$, methyl (E)-3-(pyrrol-2-yl)propenoate, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$, (3), methyl (E)-3-(imidazol-2-yl)propenoate, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$, (4), and methyl (Z)-3-(imidazol-2-yl)propenoate, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$, (5), are reported. In the pyrrole and imidazole derivatives, (3) and (4), the $\mathrm{N}-\mathrm{H}$ function has an $s-Z$ configuration with respect to the propenoate chain, whereas in the urocanate, (2), protonation has occurred at the N atom further from the side chain. In (5), an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond causes a relative widening of the angles in the side chain. In all four compounds, both the azole rings and the side chains are almost planar. In the hemihydrate of (2), there is extensive hydrogen bonding, primarily of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ but supplemented by much longer $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. In (3) and (4), the hydrogen bonding is much simpler, with molecules linked into ribbons via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contacts.

Comment

(E)-Urocanic acid, (1), is a naturally occurring metabolite of histidine, which comprises ca 0.5% of the dry weight of the epidermis. It is thought that (1) acts as a natural photoprotecting agent (Morrison, 1985) and for this reason there are many recent patents covering the uses of esters of (1) as components of sunscreens. Although the structure of (1) itself has been known for 20 years (Hawkinson, 1977; Svinning \& Sørum, 1979), it occurs in the solid state as a zwitterion, (la), and so is not directly relevant to the corresponding ester structure. In this paper, we report structural data for a series of four azolyl-3-propenoic esters comprising methyl (E)urocanate, (2) (as the hemihydrate), the corresponding pyrrol-2-yl and imidazol-2-yl derivatives, (3) and (4), and the imidazol-2-yl (Z)-propenoate, (5) (McNab \& Thornley, 1997; Campbell et al., 1997).

In the structure of (3), there are two molecules per asymmetric unit and in (5) there are three molecules;

[^0]
(1)

(3)

(4)
no significant differences between the independent molecules in the asymmetric unit in each of these were noted, except as detailed below. In the pyrrole and imidazole derivatives, (3) and (4), the $\mathrm{N}-\mathrm{H}$ bond adopts an $s-Z$ configuration with respect to the propenoate chain, whereas in the urocanate, (2), it is the N atom remote from the side chain which is protonated. The absence of an adjacent $\mathrm{N}-\mathrm{H}$ bond allows the angle $\mathrm{C} 4-\mathrm{C} 6-\mathrm{C} 7$ in (2) to become more acute $\left[125.68(13)^{\circ}\right]$ than in the other E esters ($>127^{\circ}$). The (Z)-propenoate, (5), forms an intramolecular hydrogen bond between the N-H bond and the carbonyl O atom of the ester moiety [average parameters $\mathrm{N}-\mathrm{H} 0.89$ (3), $\mathrm{O} \cdots \mathrm{H} 1.84$ (3) $\AA, \mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O} 149(3)^{\circ}$ and $\mathrm{O} \cdots \mathrm{N} 2.653(3) \AA$ A. This causes all the angles in the side chain to be widened (by 1.4-6.8 ${ }^{\circ}$) with respect to the E esters, with the major differences occurring at C6 and C7.

A comparison of the bond lengths in the four structures reveals few significant differences. The parameters for the azole rings are little different from typical values for these systems. However, the small difference, in (3), between the $\mathrm{N} 1-\mathrm{C} 5$ and $\mathrm{N} 1-\mathrm{C} 2$ lengths is common in pyrroles with electron-withdrawing substituents in the 2-position (Blake, McNab \& Thornley, 1995) and the N3-C4 bond in (2) is particularly long by comparison with the other structures. Both of these minor features may reflect the conjugative pathway from the N1 lone pair to the ester carbonyl function.

In all the structures, (2)-(5), the azole rings are planar [greatest ring deviations $0.003 \AA$ in (2), (3) and (4)]; the propenoate chains as a whole are also close to being
planar, although the average deviations are $c a$ one order of magnitude greater. The angles between the normals to these planes are small but significant, ranging from $0.85(11)^{\circ}$ in molecule B of (5), to 9.97 (9) and 9.2 (2) ${ }^{\circ}$ in (2) and (4), respectively.

In (2), which crystallizes as the hemihydrate with the water molecule on a twofold axis (Fig. 1), there is extensive hydrogen bonding; each water molecule acts as a double donor and double acceptor to four symmetryrelated molecules of (2). Each molecule of (2) forms one long and two short hydrogen bonds; the long contact involves C5-H5 $\cdots 9^{i}\left[\mathrm{H} 5 \cdots \mathrm{O} 9^{i} 2.48\right.$ (2) \AA and C5H5 ..O $9^{i} 154(2)^{\circ}$; symmetry code: (i) $x-\frac{1}{2}, y-\frac{1}{2}$, $z]$. The short contacts involve the water molecules and are (a) an $\mathrm{Nl}-\mathrm{Hl} \cdots \mathrm{Ol} W$ interaction within the same asymmetric unit, with $\mathrm{H} 1 \cdots \mathrm{O} 1 W 1.99$ (2) \AA and $\mathrm{N} 1-$ $\mathrm{H} 1 \cdots \mathrm{O} W^{176(2)^{\circ}}$, and (b) an $\mathrm{N} 3 \cdots \mathrm{H} 1 W^{\mathrm{ii}}-\mathrm{O} 1 W^{\mathrm{ii}}$ contact with N3 \cdots H1 $W^{\text {ii }} 2.03(2) \AA$ and N $3 \cdots$ H1 $W^{\text {ii }}-$ O1 $W^{\mathrm{ii}} 164(2)^{\circ}$ [symmetry code: (ii) $-\frac{1}{2}-x, \frac{1}{2}+y$, $\frac{3}{2}-z$. The structure may be visualized as alternating shells of water and (2), which are shown in Fig. 1.

Fig. 1. A view of the structure of (2). $0.5 \mathrm{H}_{2} \mathrm{O}$, showing the atomnumbering scheme and part of the hydrogen-bonded network. Displacement ellipsoids enclose 50% probability surfaces and H atoms are shown as spheres of arbitrary radii. [Symmetry codes: (i) $x-\frac{1}{2}, y-\frac{1}{2}, z ;$ (ii) $-\frac{1}{2}+x, \frac{1}{2}+y, \frac{3}{2}-z$.]

The asymmetric unit of (3) contains two independent molecules (Fig. 2) which are hydrogen bonded $\left[\mathrm{O} 8 \cdots \mathrm{H}^{\prime}-\mathrm{Nl}^{\prime}\right.$, with $\mathrm{O} 8 \cdots \mathrm{H}^{\prime} \quad 2.03(2) \AA$ and $\mathrm{O} 8 \cdots \mathrm{Hl}^{\prime}-\mathrm{Nl}^{\prime} 166(4)^{\circ} \mathrm{J}$. These pairs of molecules are further linked by $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\prime \mathrm{j}}$ contacts $\left[\mathrm{H} \cdots \mathrm{O}^{\prime \mathrm{i}} 1.98(2) \AA\right.$ and $\mathrm{N} 1-\mathrm{Hl} \cdots \mathrm{O}^{\mathrm{i}} 169(4)^{\circ}$; symmetry code: (i) $x-1, y, z]$ to form infinite ribbons running parallel to \mathbf{a}.
In (4) (Fig. 3), molecules related by the a glide plane are linked into ribbons running in the a direction, in this

Fig. 2. A view of the structure of (3) showing the atom-numbering scheme for the two independent molecules, which are hydrogen bonded and alternate to form ribbons of molecules in the a direction. Displacement ellipsoids enclose 50% probability surfaces and H atoms are shown as spheres of arbitrary radii. [Symmetry codes: (i) $x+1, y, z ;$ (ii) $x-1, y, z$.]

Fig. 3. A view of the structure of (4) showing the atom-numbering scheme. The hydrogen-bonded molecules are related by the 2_{1} screw axis parallel to a and form ribbons running in that direction. Displacement ellipsoids enclose 50% probability surfaces and H atoms are shown as spheres of arbitrary radii. [Symmetry code: (i) $x-\frac{1}{2}, y, \frac{1}{2}-z$.]
case by $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 3^{\mathrm{i}}$ contacts $\left[\mathrm{H} 1 \cdots \mathrm{~N} 3^{i} 2.04(3) \AA\right.$ and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 3^{\mathrm{i}} 171(3)^{\circ}$; symmetry code: (i) $x-\frac{1}{2}$, $\left.y, \frac{1}{2}-z\right]$.

There are no significant intermolecular hydrogen bonds in (5), only the intramolecular contact described above (see Fig. 4).

Fig. 4. A view of one of the three independent molecules of (5) showing the atom-numbering scheme. Displacement ellipsoids enclose 50% probability surfaces and H atoms are shown as spheres of arbitrary radii. The intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond closes a seven-membered ring.

Experimental

The urocanate, (2), was prepared by esterification of commercially available urocanic acid (Kimoto, Fujii \& Cohen, 1984; $\mathrm{McNab} \&$ Thornley, 1997). The esters, (3)-(5), were made by Wittig reactions of the appropriate azolylcarbaldehyde as described previously [(3) according to Campbell et al., 1997; (4) and (5) according to McNab \& Thornley, 1997]. Compound (2) was crystallized from ethyl acetate, (3) from toluene/hexane, (4) from benzene and (5) from hexane.

Compound (2)

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} .0 .5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=161.16$
Monoclinic
$C 2 / c$
$a=7.498(3) \AA$
$b=12.564$ (4) \AA
$c=16.296(13) \AA$
$\beta=93.36$ (4) ${ }^{\circ}$
$V=1532.5(15) \AA^{3}$
$Z=8$
$D_{x}=1.397 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 18 reflections
$\theta=15-16^{\circ}$
$\mu=0.108 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Tablet
$0.77 \times 0.77 \times 0.42 \mathrm{~mm}$
Colourless

Data collection

Stoe Stadi-4 four-circle diffractometer with Oxford Cryosystems open-flow cryostat
(Cosier \& Glazer, 1986)
$\omega-2 \theta$ scans
Absorption correction: none
1345 measured reflections
1345 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.096$
$S=1.057$
1345 reflections
142 parameters
H atoms freely refined with common $U_{\text {iso }}=$ $0.042(2) \AA^{2}$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.058 P)^{2}\right.$ $+0.924 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (2)

N1-C2	$1.3523(19)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.330(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.362(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.473(2)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.3147(19)$	$\mathrm{C} 8-\mathrm{O} 8$	$1.2063(18)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.3873(19)$	$\mathrm{C} 8-\mathrm{O} 9$	$1.3486(17)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.3690(19)$	$\mathrm{O} 9-\mathrm{C} 9$	$1.4452(18)$
$\mathrm{C} 4-\mathrm{C} 6$	$1.445(2)$		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5$	$107.03(12)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 4$	$125.68(13)$
N3-C2-N1	$112.23(13)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$121.16(13)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$104.95(12)$	$\mathrm{O} 8-\mathrm{C} 8-\mathrm{O} 9$	$123.36(12)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$	$109.45(12)$	$\mathrm{O} 8-\mathrm{C} 8-\mathrm{C} 7$	$126.20(13)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 6$	$127.22(12)$	$\mathrm{O} 9-\mathrm{C} 8-\mathrm{C} 7$	$110.44(11)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 6$	$123.31(12)$	$\mathrm{C} 8-\mathrm{O} 9-\mathrm{C} 9$	$116.36(11)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$106.33(12)$		

Compound (3)

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$
$M_{r}=151.16$
Monoclinic
$P 2_{1} / n$
$a=10.795$ (3) \AA
$b=8.271(1) \AA$
$c=17.803(3) \AA$
$\beta=92.957$ (15) ${ }^{\circ}$
$V=1587.5(6) \AA^{3}$
$Z=8$
$D_{x}=1.265 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 four-circle
diffractometer
$\omega-2 \theta$ scans
Absorption correction: none

1234 reflections with

$$
I>2 \sigma(I)
$$

$\theta_{\text {max }}=25.05^{\circ}$
$h=-8 \rightarrow 8$
$k=0 \rightarrow 14$
$l=0 \rightarrow 19$
3 standard reflections frequency: 60 min intensity variation: $\pm 1.5 \%$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3}$
Extinction correction:
SHELXL96 (Sheldrick, 1996)

Extinction coefficient: 0.0044 (12)

Scattering factors from International Tables for Crystallography (Vol. C)

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 27 reflections
$\theta=12-13^{\circ}$
$\mu=0.092 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Lath
$0.930 \times 0.175 \times 0.078 \mathrm{~mm}$
Colourless

$$
\begin{aligned}
& \theta_{\max }=24.99^{\circ} \\
& h=-12 \rightarrow 11 \\
& k=0 \rightarrow 9 \\
& l=0 \rightarrow 21
\end{aligned}
$$

2589 measured reflections 3 standard reflections 2589 independent reflections 918 reflections with

$$
I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.215$
$S=1.014$
2589 reflections
206 parameters
H atoms freely refined (for Hl and Hl^{\prime}, on Nl and $\mathrm{N} 1^{\prime}$, respectively) and riding model for all others
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.079 P)^{2}\right.$ $+0.352 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.18 \mathrm{e}^{-3}$
Extinction correction: SHELXL96 (Sheldrick, 1996)

Extinction coefficient: 0.0038 (13)

Scattering factors from International Tables for Crystallography (Vol. C)
frequency: 120 min intensity decay: 16%

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (3)

N1-C5	$1.352(6)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.322(6)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.366(6)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.459(7)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.365(6)$	$\mathrm{C} 8-\mathrm{O} 8$	$1.213(5)$
$\mathrm{C} 2-\mathrm{C} 6$	$1.433(7)$	$\mathrm{C} 8-\mathrm{O} 9$	$1.343(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.389(7)$	$\mathrm{O} 9-\mathrm{C} 9$	$1.437(6)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.359(6)$		
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2$	$108.6(4)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 2$	$128.1(5)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	$107.0(5)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$121.4(5)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 6$	$129.2(5)$	$\mathrm{O} 8-\mathrm{C} 8-\mathrm{O} 9$	$122.1(5)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 6$	$123.7(5)$	$\mathrm{O}-\mathrm{C} 8-\mathrm{C} 7$	$125.9(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$108.8(5)$	$\mathrm{O} 9-\mathrm{C} 8-\mathrm{C} 7$	$112.0(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$106.2(5)$	$\mathrm{C} 8-\mathrm{O} 9-\mathrm{C} 9$	$116.1(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$109.3(5)$		

Compound (4)

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=152.15$
Orthorhombic
Pbca
$a=9.706(2) \AA$
$b=8.9898$ (9) \AA
$c=17.714(3) \AA$
$V=1545.6(4) \AA^{3}$
$Z=8$
$D_{x}=1.308 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Stoe Stadi-4 four-circle diffractometer with Oxford Cryosystems open-flow cryostat (Cosier \& Glazer, 1986)
$\omega-2 \theta$ scans
Absorption correction: none
1365 measured reflections
1365 independent reflections
(6)
1.459 (7)
1.213 (5)
$1.343(5)$
1.437 (6)
128.1 (5)
122.1 (5)
$125.9(5)$
$112.0(4)$
116.1 (4)

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 30 reflections
$\theta=13-14^{\circ}$
$\mu=0.098 \mathrm{~mm}^{-1}$
$T=277$ (2) K
Plate
$0.68 \times 0.54 \times 0.05 \mathrm{~mm}$
Colourless

747 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=25.02^{\circ}$
$h=0 \rightarrow 11$
$k=0 \rightarrow 10$
$l=-21 \rightarrow 0$
3 standard reflections frequency: 120 min intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.137$
$S=1.108$
1365 reflections
104 parameters
H atoms riding, except for
H1 (bound to N1) which
was refined freely
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.035 P)^{2}\right.$ $+1.04 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$
Extinction correction: SHELXL96 (Sheldrick, 1996)

Extinction coefficient: 0.0054 (11)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 3. Selected geometric parameters ($\AA,^{\circ}$) for (4)

$\mathrm{N} 1-\mathrm{C} 2$	$1.342(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.318(4)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.354(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.465(4)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.333(3)$	$\mathrm{C} 8-\mathrm{O} 8$	$1.194(4)$
$\mathrm{C} 2-\mathrm{C} 6$	$1.433(4)$	$\mathrm{C} 8-\mathrm{O} 9$	$1.340(4)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.361(4)$	$\mathrm{O} 9-\mathrm{C} 9$	$1.452(4)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.353(4)$		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5$	$108.1(2)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 2$	$127.3(3)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 1$	$110.2(2)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$121.5(3)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 6$	$124.3(3)$	$\mathrm{O} 8-\mathrm{C} 8-\mathrm{O} 9$	$123.7(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 6$	$125.5(3)$	$\mathrm{O} 8-\mathrm{C}-\mathrm{C} 7$	$15.5(3)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$105.6(2)$	$\mathrm{O} 9-\mathrm{C} 8-\mathrm{C} 7$	$10.8(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$	$110.0(3)$	$\mathrm{C} 8-\mathrm{O} 9-\mathrm{C} 9$	$116.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$106.1(3)$		

Compound (5)

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=152.15$
Monoclinic
$P 2_{1} / c$
$a=15.700$ (13) \AA
$b=18.927$ (16) \AA
$c=7.311(5) \AA$
$\beta=100.13(6)^{\circ}$
$V=2139$ (3) \AA^{3}
$Z=12$
$D_{x}=1.418 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 four-circle diffractometer with Oxford Cryosystems open-flow cryostat (Cosier \& Glazer, 1986) $\omega-2 \theta$ scans
Absorption correction: none 2782 measured reflections 2782 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.118$
$S=1.036$
2782 reflections
308 parameters
H atoms riding

$$
\Delta \rho_{\max }=0.18 \mathrm{e}^{\AA^{-3}}
$$

$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$
Extinction correction: SHELXL96 (Sheldrick, 1996)

Extinction coefficient: 0.0031 (6)

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{o}^{2}\right)+(0.06 P)^{2}\right)
$$

Scattering factors from
International Tables for
Crystallography (Vol. C)

Table 4. Selected geometric parameters ($\AA^{\circ},^{\circ}$) for (5)

$\mathrm{N} 1 A-\mathrm{C} 2 \mathrm{~A}$	1.342 (3)	C6A-C7A	1.330 (4)
N1A-C5A	1.343 (3)	C7A-C8A	1.448 (4)
$\mathrm{C} 2 A-\mathrm{N} 3 A$	1.322 (3)	C8A-O8A	1.206 (3)
C2A-C6A	1.420 (4)	C 8 - O 9 A	1.323 (3)
N3A-C4A	1.348 (3)	O9A-C9A	1.428 (3)
C4A-C5A	1.337 (4)		
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 5 A$	107.9 (2)	C7A-C6A-C2A	133.3 (2)
$\mathrm{N} 3 A-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 A$	110.3 (2)	C 6 - $-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8$ A	127.8 (2)
$\mathrm{N} 3 A-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 6 A$	122.5 (2)	$\mathrm{O} 8 \mathrm{~A}-\mathrm{C} 8$ - -O 9 A	122.0 (2)
$\mathrm{N} 1 A-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 6 A$	127.2 (2)	O8A-C8A-C7A	127.1 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 3 A-\mathrm{C} 4 A$	105.1 (2)	O9A-C8A-C7A	110.9 (2)
$\mathrm{C} 5 A-\mathrm{C} 4 A-\mathrm{N} 3 A$	110.9 (2)	C8A-O9A-C9A	115.8 (2)
$\mathrm{C} 4 A-\mathrm{C} 5 A-\mathrm{NI} A$	105.9 (2)		

For all compounds, data collection: DIF4 (Stoe \& Cie, $1990 a$); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1990b); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL96 (Sheldrick, 1996); molecular graphics: SHELXTL (Sheldrick, 1994); software used to prepare material for publication: SHELXL96.

The authors thank the EPSRC for provision of a fourcircle diffractometer and the University of Edinburgh for a Research Studentship (to CT).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HA1192). Services for accessing these data are described at the back of the journal.

References

Blake, A. J., McNab, H. \& Thornley, C. (1995). Acta Cryst. C51, 2348-2350.
Campbell, S. E., Comer, M. C., Derbyshire, P. A., Despinoy, X. L. M., McNab, H., Morrison, R., Sommerville, C. C. \& Thornley, C. (1997). J. Chem. Soc. Perkin Trans. 1. In the press.

Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Hawkinson, S. W. (1977). Acta Cryst. B33, 2288-2291.
Kimoto, H., Fujii, S. \& Cohen, L. A. (1984). J. Org. Chem. 49, 10601064.

McNab, H. \& Thornley, C. (1997). J. Chem. Soc. Perkin Trans. 1. In the press.
Morrison, H. (1985). Photodermatology, 2, 158-165.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1994). SHELXTL. Structure Determination Programs. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SHELXL96. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stoe \& Cie (1990a). DIF4. Diffractometer Control Program. Version 7.09. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1990b). REDU4. Data Reduction Program. Version 7.03. Stoe \& Cie, Darmstadt, Germany.
Svinning, T. \& Sørum, H. (1979). Acta Cryst. B35, 2813-2815.

[^0]: \dagger Deceased.
 \ddagger Current address: Department of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England.

